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Abstract. The Boltzmann equations is an integro-differential equation posed on a high-dimensional position-velocity space.
The complexity of the Boltzmann equation in principle prohibits straightforward approximation by the finite-element method.
In many applications of the Boltzmann equation, interest is however restricted to one particular goal functional of the
solution. In such cases, significant reduction of the computational complexity can be accomplished by means of goal-adaptive
refinement strategies. In this paper, we present a goal-oriented error-estimation and adaptive-refinement procedure for a one-
dimensional prototype of the Boltzmann model with a collision term that exhibitsthe essential complexities and characteristics
of higher dimensional Boltzmann models.
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INTRODUCTION

In many fluid-engineering applications, one is interested in macro-scalequantities such as a local temper-
ature, heat transfer across a part of a boundary or aggregated mass transfer across a part of the boundary.
The Navier-Stokes or Euler equations provide a suitable description of fluids in the continuum regime, i.e.,
for sufficiently smallKnudsennumbers. If the continuum assumption is violated, one needsto revert to an
alternative description of the flow, e.g., molecular dynamics (MD) or a probabilistic description as provided
by the Boltzmann equation. Because macro-scale flow properties depend essentially on ensembles and not
on individual molecules, the Boltzmann equation is in principle most suitable for determining macro-scale
properties of flows in the transitional molecular/continuum regime; see [1, 2].

The Boltzmann equation specifies the evolution of aone-particle probability density functionon a high-
dimensional position-velocity space, viz.,R

2d for d spatial dimensions. Approximation of such a high-
dimensional problem requires extremely efficient numerical techniques. Given that practical interest is
often restricted to particular quantities, we considergoal-oriented adaptivefinite-element strategies. Goal-
adaptive finite-element strategies provide a (quasi-)optimal computational model for a particular functional.
These strategies rely on a-posteriori estimates of the error in the functional, based on the solution of a
(linearized) dual problem. The a-posteriori error estimate is subsequently used to construct element-wise
refinement indicators to optimally improve the accuracy of the goal functional; see [3, 4] for further details.

In this work we are concerned with goal-adaptive finite-element approximations of a one-dimensional
prototype of the Boltzmann equation. We derive the corresponding linearized dual problem and formulate
the goal-adaptive refinement strategy. Finally, we presentnumerical results to illustrate the characteristic
properties of the method.



PROBLEM STATEMENT

The Boltzmann model

We consider an open (spatial) intervalΩ =]0,1[, a (velocity) intervalΞ = R and the position-velocity
domainΣ = Ω×Ξ. The boundary ofΣ, denoted by∂Σ, consists of two disjoint parts,Γ0 andΓ1, corre-
sponding tox = 0 andx = 1, respectively. Furthermore,Γ0 (resp.Γ1) is composed of an inflow boundary
Γ−

0 (resp.Γ−
1 ) and and outflow boundaryΓ+

0 (resp.Γ+
1 ). Formally denoting byP the aggregate of allone-

particle probability-density functionson Σ, the stationary Boltzmann model problem specifies thatf ∈ P

complies with:

∇( f ξ )−Q( f , f ) = 0 onΣ,

f = fB on Γ−,
(1)

whereΓ± = Γ±
0 ∪Γ±

1 and fB is a prescribed function. Thecollision term Qis a bilinear operator fromP×P

into some dual space, which we assume to coincide withP ′.
For standard elastic collisions, the collision operator vanishes in 1D. Consequently, the 1D Boltzmann

equation with elastic collisions lacks certain essential properties, in particular, weak convergence of solutions
to Maxwell-Boltzmann equilibrium distributions; see, e.g., [1]. To recover the weak-convergence property,
we instead fabricated a 1D Boltzmann equation withenergy-conserving random collisions. The correspond-
ing collision term can be separated into a gain and a loss termaccording toQ( f ,h) = ε−1(G( f ,h)−L( f ,h)),
whereε denotes the Knudsen number and:

L( f ,h) = f ℓ(h)

G( f ,h) =
∫ ξ

−∞
1
2|ξ −η | [g+( f ,h)](ξ ,η)dη +

∫ ∞

ξ
1
2|ξ −η | [g−( f ,h)](ξ ,η)dη ,

with

[ℓ(h)](ξ ) =
∫ ∞

−∞
h(η)|ξ −η |dη

[g±( f ,h)](ξ ,η) =
∫ π

0
f (±|ξ ,η |cos(α + π

4 ))h(±|ξ ,η |sin(α + π
4 ))sin(α)dα

and|ξ ,η | =
√

ξ 2 +η2.
To facilitate the derivation of the dual problem, we condense (1) into the variational formulation: Find

f ∈ P such that
a( f ,ϕ)+q( f , f ,ϕ) = b(ϕ) ∀ϕ ∈ P, (2)

where the bilinear functionala, the trilinear functionalq and the linear functionalb are defined by

a( f ,ϕ) = −( f ,∇(ϕξ ))Σ − (ϕ, f ξ )Γ+
0

+(ϕ, f ξ )Γ+
1
,

q( f ,h,ϕ) = −(ϕ,Q( f ,h))Σ, b(ϕ) = (ϕ, fBξ )Γ−
0
− (ϕ, fBξ )Γ−

1
.

with (·, ·)ω the standardL2 inner product on the setω.

Quantity of interest

Rather than in the solutionf itself, we are interested in the value of a goal functional ofthe solutionJ( f )
with J ∈ P ′. We consider the generic goal functional:

J( f ) := ( f ,ψ)Σ − ( f ξ ,ζ )Γ+
0

+( f ξ ,ζ )Γ+
1

. (3)

For instance, forψ = 0, ζ |Γ+
1

= 0 andζ |Γ+
0

= (·)2, the functionalJ represents the energy flux at the outflow

boundaryΓ+
0 , which is an important quantity in heat-transfer problems.Note that for stationary problems,

the total energy flux across the boundary necessarily vanishes.



THE DUAL OF THE BOLTZMANN MODEL

The nonlinear functional( f ,ϕ) 7→ q( f , f ,ϕ) is Fréchet differentiable with derivative

q( f̃ ,δ f ,ϕ)+q(δ f , f̃ ,ϕ) = q( f̃ +δ f , f̃ +δ f ,ϕ)−q( f̃ , f̃ ,ϕ)+O
(

‖δ f‖2), (4)

as ‖δ f‖ → 0. At an approximationf̃ ∈ P, the linearized dual problem associated with the variational
problem (2) and the goal functionalJ is therefore given by: Findγ ∈ P such that

a(δ f ,γ)+q( f̃ ,δ f ,γ)+q(δ f , f̃ ,γ) = J(δ f ) ∀δ f ∈ P, (5)

To derive the integro-differential equation associated with (5) and the corresponding boundary conditions,
we separate the trilinear formq according toq = q(G) −q(L), corresponding to the partition ofQ, and we
note that:

q(L)(δ f , f̃ ,γ)+q(L)( f̃ ,δ f ,γ) =
(

δ f ,γ ℓ( f̃ )+ ℓ(γ f̃ )
)

Σ =:
(

δ f ,L∗( f̃ ,γ)
)

Σ.

To derive the contribution corresponding to the gain term, we invoke the transformation(ξ ,η) =
r(cosθ ,sinθ) to obtain:

q(G)(δ f , f̃ ,γ) =
∫

Ω

∫ ∞

0

∫ 2π

π
2−1/2r2 γ

(

x, r cos
(

θ +
π
4

))

|sinθ |
∫ π

0
δ f

(

x, r cos
(

α +
π
4

))

f̃ (x, r sin(α +
π
4

)) sinα dα dθ dr dx

+
∫

Ω

∫ ∞

0

∫ π

0
2−1/2r2 γ

(

x, r cos
(

θ +
π
4

))

|sinθ |
∫ π

0
δ f

(

x,−r cos
(

α +
π
4

))

f̃ (x,−r sin(α +
π
4

)) sinα dα dθ dr dx

(6)

Note that (6) admits a change in the order of integration. After a series of tedious manipulations, we then
obtain:

q(G)(δ f , f̃ ,γ)+q(G)( f̃ ,δ f ,γ) = (δ f ,G∗( f̃ ,γ))Σ,

where
[G∗( f̃ ,γ)](x,u) = 2−1

∫ ∞

−∞
f̃ (x,η) |ξ −η |

(

[g+(γ,1)](x,η)+ [g−(γ,1)](x,η)
)

dη

The integro-differential equation associated with (5) andthe corresponding boundary conditions now follow
straightforwardly by identifying like terms:

−∇(γξ )−G∗( f̃ ,γ)+L∗( f̃ ,γ) = ψ on Σ, (7a)

γ = −ζ on Γ+, (7b)

GALERKIN APPROXIMATION AND ADAPTIVITY

Discontinuous Galerkin finite element approximation

To approximate the primal problem (2) and the dual problem (5), we apply a discontinuous
Galerkin method (dG). For an elaboration of the dG method, see, e.g., [5]. The velocity do-
main Ξ is truncated and the corresponding domainΣ = Ω × Ξ is covered with a regular tessel-
lation T of disjoint rectangular open element-domains, such thatΣ = int

(

⋃

σ∈T σ
)

. Denoting by
Pp = { f ∈ L2(Σ) : f |σ is polynomial of degree≤ p in both arguments for allσ ∈ T } the finite-element
approximation space of piecewise tensor-product polynomials of degreep, subordinate to the meshT , the
discontinuous Galerkin approximation of (2) is given by:find fp ∈ Pp such that

a( fp,ϕp)−q( fp, fp,ϕp) = b(ϕp) ∀ϕp ∈ Pp. (8)



It is to be remarked that, in fact, we use a standard modification of the bilinear forma in the dG formu-
lation which includesupwind fluxes. For conciseness, this standard modification is not furtherelaborated.
Associated with the primal variational problem (8) is theresidual functional r: P ⊕Pp → P ′,

〈r( f ), ·〉 := b(·)−a( f , ·)−q( f , f , ·) . (9)

If f solves (2), thenr( f ) = 0. Furthermore, for the solutionfp of (8) we have theGalerkin orthogonality
relation〈r( fp),ϕp〉 = 0 for all ϕp ∈ Pp.

Error estimates

For any approximationfp, we can express the corresponding error in the goal functional up to linearization
errors by the duality pairing〈r( fp),γ〉. Indeed, we have the chain of identities:

J( f )−J( fp) = J( f − fp) = a( f − fp,γ)+q( fp, f − fp,γ)+q( f − fp, fp,γ)

= a( f ,γ)+q( f , f ,γ)−a( fp,γ)−q( fp, fp,γ)+O(‖ f − fp‖
2)

= b(γ)−a( fp,γ)−q( fp, fp,γ)+O(‖ f − fp‖
2)

= 〈r( fp),γ〉+O(‖ f − fp‖
2) = 〈r( fp),γ − γp〉+O(‖ f − fp‖

2), (10)

for all γp ∈ Pp. The second and fourth identity in the above chain follow from the dual problem (5) and
the primal problem (2), respectively. The final identity holds on account of Galerkin orthogonality. The dual
solutionγ is in general not computable. A computable error estimate isobtained by replacingγ in the final
expression in (10) by dG approximation of the dual solution in Pp+1.

Adaptive strategy

To determine element wise error indicators, we consider thefollowing sequence of bounds:

|〈r( fp),γp+1〉| =
∣

∣

∣∑
i
〈r( fp),ψ i

p+1〉γ̂
i
p+1

∣

∣

∣
≤ ∑

σ∈T

κσ with κσ = ∑
i∈Iσ

∣

∣〈r( fp),ψ i
p+1〉

∣

∣

∣

∣γ̂ i
p+1

∣

∣,

where{ψ i
p+1} are the finite-element basis functions ofPp+1 and γ̂ i

p+1 are the corresponding coefficients
of the approximation to the dual solution. Moreover,Iσ denotes the index set associated with a particular
elementσ . Based on the error indicatorsκσ , we use aDörfler-type strategyto mark elements with the largest
error contributions for refinement, in such a manner that thesum of their error indicators is at least a certain
fraction of the total error; see [6].

In this work we restrict ourselves to so-calledh-refinement, meaning that elements are divided in eitherx,
ξ or both directions. Furthermore, due to the complexity of the collision operator, a semi-local refinement
strategy is employed to prevent the occurrence ofhanging nodes.

NUMERICAL EXPERIMENT

To illustrate the potential of goal-adaptive methods for the Boltzmann equation, we consider a test case
in which the solution corresponds to the equilibrium distribution feq(x,ξ ) = (2π)−1/2exp(ξ 2/2), and we
compare results obtained by uniform mesh-refinement and goal-adaptive mesh-refinement in terms of the
error in the goal functional versus the number of degrees of freedomNdofs. We provide the Boltzmann
equation with the boundary conditionsfB = feq(0, ·) at Γ−

0 and specular reflection atΓ1, viz., f (1,−ξ ) =
f (1,ξ ) for ξ ∈ R+. Furthermore, we consider two distinct goal functionals, corresponding to a boundary
flux at Γ+

0 , i.e., referring to (3), we setψ = 0, ζ |Γ+
1

= 0 and

ζ |Γ+
0
(ξ ) = cos(ξ )−1 and ζ |Γ+

0
(ξ ) =

{

cos(ξ )−1 −π/2 < ξ < 0
0 otherwise

, (11)



1 1.5 2 2.5 3 3.5 4
−7

−6

−5

−4

−3

−2

−1

0

 

 

log(Ndofs)

lo
g(

J(
δ

f)
)

slope:−2

1 1.5 2 2.5 3 3.5 4
−7

−6

−5

−4

−3

−2

−1

0

 

 

log(Ndofs)

lo
g(

J(
δ

f)
)

slope:−2

FIGURE 1. Convergence of the error (continuous), error estimate (dashed) and the upper bound∑σ∈T κσ of the error
estimate (red continuous) for goal functional I for uniform mesh refinement (left) and goal-adaptive mesh refinement
(right).
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FIGURE 2. Convergence of the error (continuous), error estimate (dashed) and the upper bound∑σ∈T κσ of the error
estimate (red continuous) for goal functional II for uniform mesh refinement (left) and goal-adaptive mesh refinement
(right).

for goal functionals I and II, respectively. Noting thatζ |Γ+
0

appears as boundary data in the dual problem (7),
we infer that goal functional I yields a smooth dual solution, while goal functional II yields a non-smooth
dual solution.

We consider linear dG approximations, i.e.,p = 1. Figures 1 and 2 present convergence results for
goal functional I and goal functional II, respectively, foruniform refinement (left panel) and goal-adaptive
refinement (right panel). Figure 1 shows that both uniform and adaptive refinement converge with optimal
order (in this case,p+ 1) if the dual solution is smooth. Figure 2 illustrates that uniform refinement leads
to suboptimal convergence if the goal functional engendersa non-smooth dual solution. The goal-adaptive
refinement procedure restores the optimal convergence behavior, by effectively refining the finite element
mesh in the vicinity of the discontinuity in the dual solution; see also the adaptively refined meshes in
Figure 3. The symmetry of the mesh with respect toξ = 0 has been imposed to avoid mesh irregularity
(hanging nodes) due to the specular-reflection boundary condition atΓ1.
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FIGURE 3. Primal solution (left) and dual solution (right) on the adaptively refined finite element mesh for goal
functional II, which generates a discontinuity in the dual solution onΓ+

0 at ξ = −π/2.
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