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Abstract. The Boltzmann equations is an integro-differential equation posed orhadirigensional position-velocity space.
The complexity of the Boltzmann equation in principle prohibits straightfodvegproximation by the finite-element method.
In many applications of the Boltzmann equation, interest is however testrio one particular goal functional of the
solution. In such cases, significant reduction of the computational leaitypcan be accomplished by means of goal-adaptive
refinement strategies. In this paper, we present a goal-orientaeestimation and adaptive-refinement procedure for a one-
dimensional prototype of the Boltzmann model with a collision term that exhtiBtessential complexities and characteristics
of higher dimensional Boltzmann models.
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INTRODUCTION

In many fluid-engineering applications, one is interestethacro-scalequantities such as a local temper-
ature, heat transfer across a part of a boundary or aggcegatss transfer across a part of the boundary.
The Navier-Stokes or Euler equations provide a suitablerg®®n of fluids in the continuum regime, i.e.,
for sufficiently smallKnudsemumbers. If the continuum assumption is violated, one ne&zdsvert to an
alternative description of the flow, e.g., molecular dynasr{MD) or a probabilistic description as provided
by the Boltzmann equation. Because macro-scale flow pliegatepend essentially on ensembles and not
on individual molecules, the Boltzmann equation is in pptemost suitable for determining macro-scale
properties of flows in the transitional molecular/continutegime; see [1, 2].

The Boltzmann equation specifies the evolution oha-particle probability density functioon a high-
dimensional position-velocity space, ViR for d spatial dimensions. Approximation of such a high-
dimensional problem requires extremely efficient numérieahniques. Given that practical interest is
often restricted to particular quantities, we consigeal-oriented adaptivéinite-element strategies. Goal-
adaptive finite-element strategies provide a (quasi-yugdtcomputational model for a particular functional.
These strategies rely on a-posteriori estimates of the @irthe functional, based on the solution of a
(linearized) dual problem. The a-posteriori error estgnatsubsequently used to construct element-wise
refinement indicators to optimally improve the accuracyhefgoal functional; see [3, 4] for further details.

In this work we are concerned with goal-adaptive finite-edatrapproximations of a one-dimensional
prototype of the Boltzmann equation. We derive the corredjpg linearized dual problem and formulate
the goal-adaptive refinement strategy. Finally, we presenterical results to illustrate the characteristic
properties of the method.



PROBLEM STATEMENT

The Boltzmann model

We consider an open (spatial) inten@l=]0, 1], a (velocity) interval= = R and the position-velocity
domainX = Q x =. The boundary ok, denoted by, consists of two disjoint part$,o andl"1, corre-
sponding tox = 0 andx = 1, respectively. Furthermor€&y (resp.l';) is composed of an inflow boundary
o (resp.r;) and and outflow boundaryj (resp.l';). Formally denoting by the aggregate of atine-
particle probability-density functionsn Z, the stationary Boltzmann model problem specifies that%
complies with:

O(f&)-Q(f.f)=0  on,
f=1g onl—,

1)

wherel = =5 Ul andfg is a prescribed function. Tremllision term Qis a bilinear operator fron¥” x &
into some dual space, which we assume to coincide with

For standard elastic collisions, the collision operatanistes in 1D. Consequently, the 1D Boltzmann
equation with elastic collisions lacks certain essentiapprties, in particular, weak convergence of solutions
to Maxwell-Boltzmann equilibrium distributionsee, e.g., [1]. To recover the weak-convergence property,
we instead fabricated a 1D Boltzmann equation \eitlergy-conserving random collisiarihe correspond-
ing collision term can be separated into a gain and a lossaecwording taQ( f,h) = e~1(G(f,h) —L(f,h)),
wheree denotes the Knudsen number and:

L(f,h) = f¢(h)

ot = [ 3ig-nlig’ (t.nlEman+ [ HE—nllg (FmiEm)an,

with

(01 = [ nmIg ~nldn

(g (F.0I(Em) = [ F(]&.n|cos(a + ) hx[E.nlsin(a + F))sin(ar) da

and|&,n|=+/&2+n2
To facilitate the derivation of the dual problem, we conde(ik) into the variational formulation: Find
f € & such that

a(f,¢)+a(f,f.¢)=0b(¢) Ve, 2
where the bilinear functional, the trilinear functionatj and the linear functiondd are defined by
a(f,¢) =—(1,0(08))z = (¢, f)rs + (0, FE)rs
q(fah7¢) = _(¢7Q(f’h))27 b(¢) = (¢7 fBE)ra - (¢7 fBE)FI

with (-,-),, the standardl? inner product on the seb.

Quantity of interest

Rather than in the solutiohitself, we are interested in the value of a goal functionahefsolutionJ( f)
with J € £2'. We consider the generic goal functional:

30 = (@) — (16,05 + (16,0 ®)

For instance, fory =0, Z|FI =0 andZ||-g = (-)?, the functionall represents the energy flux at the outflow

boundaryl™, which is an important quantity in heat-transfer probleMste that for stationary problems,
the total energy flux across the boundary necessarily vagish



THE DUAL OF THE BOLTZMANN MODEL
The nonlinear functionglf, ¢) — q(f, f, ¢) is Fréchet differentiable with derivative
a(f,of,¢)+asf, f,9) =a(f+of,f+5f,¢)—a(f, f.9)+0(|5]?), (4)

as||df| — 0. At an approximationf € 2, the linearized dual problem associated with the variafion
problem (2) and the goal functionais therefore given by: Fing € & such that

a(sf,y)+q(f,6f,y)+q(8f,f,y) =3(8f)  Véfe 2, (5)

To derive the integro-differential equation associatethys) and the corresponding boundary conditions,
we separate the trilinear formpaccording tog = q'® — q), corresponding to the partition &, and we
note that:

qb(sf, f,y)+qb(f,81,y) = (8f,ye(f) +e(yf))s = (8F,L°(f,y));.

To derive the contribution corresponding to the gain terng iwoke the transformatiorié,n) =
r(cosB,sind) to obtain:

fy):/Q/Om/nzn2‘1/2r2y(x7rcos(9+g)) |sing|

n T\ » . m., .
/ of (x,rcos(a + Z)) f(x,rsin(a + Z)) sina da d6 dr dx

// / 222y (xreos(0+ 7)) Isin

/5f( —rcos<a+4))f( rsm(a+4))sinadad9drdx

(6)

Note that (6) admits a change in the order of integrationeiAdt series of tedious manipulations, we then
obtain:

q @51, f,y) +d®(f,8f,y) = (51,6°(f,)s,
where

G (Fvlw =2 [ TixmIE—nl (" (% ) + g (v D]xm)) dn

The integro-differential equation associated with (5) Hrelcorresponding boundary conditions now follow
straightforwardly by identifying like terms:

-0é) -G (f,y)+L(f,y) =y onz, (7a)
y=-C onl™, (7b)

GALERKIN APPROXIMATION AND ADAPTIVITY

Discontinuous Galerkin finite element approximation

To approximate the primal problem (2) and the dual problem (®e apply a discontinuous
Galerkin method (dG). For an elaboration of the dG method, sg., [5]. The velocity do-
main = is truncated and the corresponding domain= Q x = is covered with a regular tessel-
lation 7 of disjoint rectangular open element-domains, such fhat int(sc»0). Denoting by
Py = {f € L%(%) : |5 is polynomial of degrees p in both arguments for alh € .7} the finite-element
approximation space of piecewise tensor-product polyatstf degreep, subordinate to the mesfr, the
discontinuous Galerkin approximation of (2) is given figd f, € &7 such that

a(fp, ¢p) —a(fp, fp, @p) =b(¢p) Yop € Fp. (8)



It is to be remarked that, in fact, we use a standard modifioatf the bilinear forma in the dG formu-
lation which includesupwind fluxesFor conciseness, this standard modification is not furifedvorated.
Associated with the primal variational problem (8) is thsidual functional . &2 & #, — &',

<r(f)v> :b()_a(fv)_q(fva) 9)

If f solves (2), them(f) = 0. Furthermore, for the solutiofy, of (8) we have thésalerkin orthogonality
relation(r (fp), ¢p) = 0 for all pp € Zp,.

Error estimates

For any approximatiorfip, we can express the corresponding error in the goal furadtigmto linearization
errors by the duality pairingr (fp), y). Indeed, we have the chain of identities:

I(F)=I(fp) = I(f — fp) =a(f — fp,y) +a(fp, F = fp,y) +a(f — Fp, Fp,y)
=a(f,y)+a(f,f,y) —a(fp,y) —a(fp, fo,¥) +O(/If — fp]1?)
= b(y) —a(fp,y) — a(fp. fp y) + O([| f — Fol|?)
= (r(fp),¥) +O(If = fpll*) = {r(fp).y— o) +O(lIf — fp[|?).  (20)

for all y, € &7p. The second and fourth identity in the above chain followrfrthe dual problem (5) and
the primal problem (2), respectively. The final identityd®bn account of Galerkin orthogonality. The dual
solutiony is in general not computable. A computable error estimatdiained by replacing in the final
expression in (10) by dG approximation of the dual solutiot4, . 1.

Adaptive strategy
To determine element wise error indicators, we considefalh@ving sequence of bounds:

() Voea) | = | T () U )Fpia| < 5 o with ko= 5 [(r(To). )] [,

ISBZ%;

where{wLH} are the finite-element basis functions %f,,, and f/"p+1 are the corresponding coefficients
of the approximation to the dual solution. Moreovef; denotes the index set associated with a particular
elemento. Based on the error indicatokg, we use dorfler-type strategyo mark elements with the largest
error contributions for refinement, in such a manner thasthe of their error indicators is at least a certain
fraction of the total error; see [6].

In this work we restrict ourselves to so-calledefinementmeaning that elements are divided in either
& or both directions. Furthermore, due to the complexity ef ¢bllision operator, a semi-local refinement
strategy is employed to prevent the occurrenclhasfging nodes

NUMERICAL EXPERIMENT

To illustrate the potential of goal-adaptive methods fax Boltzmann equation, we consider a test case
in which the solution corresponds to the equilibrium digition feq(x, &) = (2rm)~Y/2exp(£2/2), and we
compare results obtained by uniform mesh-refinement anagtzgtive mesh-refinement in terms of the
error in the goal functional versus the number of degreeseddomNyo;s. We provide the Boltzmann
equation with the boundary conditiorig = feq(0,-) atI'; and specular reflection &, viz., f(1,-&) =
f(1,&) for & € R... Furthermore, we consider two distinct goal functionatsresponding to a boundary
flux atld, i.e., referring to (3), we sap =0, Z|FI =0and

codé)—1 —-m/2<&<0

11
0 otherwise ’ (11)

{|r (&) =cog&)—1 and Z|r§(f){
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FIGURE 1. Convergence of the error (continuous), error estimate (dashddhampper bouny ;< & K¢ of the error

estimate (red continuous) for goal functional | for uniform mesh esfiant [eft) and goal-adaptive mesh refinement
(right).
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FIGURE 2. Convergence of the error (continuous), error estimate (dashddhampper bouny ;¢ # K of the error

estimate (red continuous) for goal functional Il for uniform meshsfient feft) and goal-adaptive mesh refinement
(right).

for goal functionals | and 11, respectively. Noting trfdpg appears as boundary data in the dual problem (7),
we infer that goal functional | yields a smooth dual solutiamile goal functional Il yields a non-smooth
dual solution.

We consider linear dG approximations, i.p.= 1. Figures 1 and 2 present convergence results for
goal functional | and goal functional Il, respectively, famiform refinementléft pane) and goal-adaptive
refinement ight pane). Figure 1 shows that both uniform and adaptive refinemenvexge with optimal
order (in this casep+ 1) if the dual solution is smooth. Figure 2 illustrates thaiferm refinement leads
to suboptimal convergence if the goal functional engendersn-smooth dual solution. The goal-adaptive
refinement procedure restores the optimal convergencevioghby effectively refining the finite element
mesh in the vicinity of the discontinuity in the dual solutjcsee also the adaptively refined meshes in
Figure 3. The symmetry of the mesh with respec€te- 0 has been imposed to avoid mesh irregularity
(hanging nodes) due to the specular-reflection boundargiton atrl ;.
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FIGURE 3. Primal solution (left) and dual solution (right) on the adaptively refinedefirlement mesh for goal
functional Il, which generates a discontinuity in the dual solutiorh'@ratf =—11/2.
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